11 лошадиных сил какая скорость
Перейти к содержимому

11 лошадиных сил какая скорость

  • автор:

Размышления дилетанта о лошадиных силах, крутящем моменте, скорости и динамике

Доброго времени суток, джентльмены, леди и сочувствующие!
На днях мне поступил вопрос: как же ты ездила на 90-сильном гольфе 180? Пришлось уточнить, что 140-160 ездила, а до 180 было дело разгонялась (по спидометру даже до 190 однажды). И скорость, динамика и лошади не имеют прямой связи.
Сказала, а потом сомневаться начала. А вдруг таки лошади и скорость имеют прямую связь?

В общем, зачем гадать, надо анализ провести.
Выбрала я десяток автомобилей от 80 до 515 л.с. В интернете нашла их технические характеристики (масса, объём двигателя, количество лошадиных сил, крутящий момент, максимальная скорость, разгон от 0 до 100 км/час). Забила в таблицу.
Сразу оговорюсь: достоверность сведений вызывает некоторые сомнения. Разница на различных ресурсах существенная. Да и цифры в ПТС порой отличаются)
По какому принципу отбирались автомобили? Это либо то, на чём я ездила, либо то, что часто вижу, либо то, что когда-то хотела купить.

Итак, участники нашего мини-псевдоисследования (модель-объём двигателя, л, крутящий момент, ньютон/м, максимальная скорость, км/час, разгон 0-100 сек):
гольф3, 1,8 л, 90 л.с., 145 ньютон/м, 180 км/час, 11,7 сек
хонда концерто 1,6 л, 112 л.с, 137 ньютон/м, 185 км/час, 10,6 сек
ВАЗ 2115, 1,6 л., 80 л/с, 137 ньютон/м, 160 км/ч, 13,2 сек
Лада Гранта, 1,6 л., 106 л.с, 148 ньютон/м, 179 км/ч, 10,9 сек
Лада приора, 1,6 л., 106 л.с, 148 ньютон/м, 183 км/ч, 11,5 сек
Ниссан максима, 3,0 л., 225 л.с, 284 ньютон/м, 225 км/ч, 8,5 сек
Пассат В5, дизель, универсал, 1,9 л, 116 л.с., 285 ньютон/м, 194 км/ч, 11 сек
Пассат В5, седан, л, 1,8Т л, 150 л.с., 210 ньютон/м, 223км/ч, 8,9 сек
Пассат СС, 2,0 л, 210 л.с., 280 ньютон/м, 240км/ч, 7,6сек
Renault Clio RS, 2,0 л, 197л.с., 215 ньютон/м, 215 км/ч, 6,9 сек
Ferarri 575M, 5,8 л, 515л.с., 589 ньютон/м, 325 км/ч, 4,2 сек
Тойота камри, 3,5 л, 249 л.с., 346 ньютон/м, 210 км/ч, 7,1 сек

Уже беглый взгляд на эти разрозненные цифры заставляет почувствовать себя идиотом (это не мат, а термин из клинической психиатрии, обозначающий определённую стадию умственной неполноценности).

Я даже несколько диаграмм составила.

Посудите сами, максимальная скорость 90-сильного гольфа 180 км/час (все мы понимаем, что под горочку да на пустой машине возможно и больше), 112-сильная хонда концерто позволяет ехать на 5 км быстрее (по факту на ней очень мягкая подвеска. Я лишь однажды, на платной дороге под Москвой дала ей 165, поседело левое бедро и больше такие эксперименты не проводились), 197-сильная клюшка (то есть разница по лощадям более чем в два раза) может позволить ехать аж на 35 км быстрее.

Может дело в динамике? Тоже непонятно. Гольф, со своими 90 немецкими пони, разгоняется до сотни за 11.7 сек, приора со 106 кобылками 11,5 сек, концерто 112 лошадей 10,6 сек.
Кстати, по ощущениям, концерто выигрывает у гольфа до сотни, а вот за сотню гольф бодрее. Может оттого, что крутящий момент у гольфика 145, а у консервочки всего 137? Хотя… разница невелика..

Кстати, та же байда и в категории «около 200 кобылок». Только около 100 кобыл цифры разгона около 10-11 сек, а около 200 — 7-8 секунд. Опять нет линейной корреляции.

Ферарри всех положила на лопатки, только мощи у неё больше более чем вдвое. Так что опять зависимость есть, да не прямая…

Я пробовала считать отношения массы автомобиля к скорости, динамике, лошадиным силам, ускорению… и не получается красивой кривой зависимости. Так что… так что… по прежнему выбираем авто сердцем, чуйкой, а не сухими цифрами))))

Сколько это 12 лошадиных сил на мотоцикле в км/ч? Хочу приобрести мотоцикл, 12hp это сколько км/в?

Климыч Искусственный Интеллект (258633) НУ раз там внизу объявления о монументах на кладбища, видимо, гонять будет прилично.

п пУченик (156) 5 месяцев назад
Остальные ответы

Спортивный велик, в одну человечью силу разганяют до 150км/ч! Ребята в секции на Байкале, на серпантине тренируются .На спусках, на поворотах велик почти ложат. А мотик в 12 коников-ИМХО и 90 км/ч -достаточно

FearИскусственный Интеллект (183729) 6 лет назад

бредятина bullshit ты дружище с физикой не дружишь и не в курсе, что сила аэродинамического сопротивления пропорциональна квадрату скорости.

максимум 75-80 дальше никаких качков не хватит, а про хуйню про съезды со спуска не гони это уже к спорту отношения не имеет.

Мотоциклы — Мощность и скорость

Вопрос:»Почему 10-сильный «Минск» развивает 100 км/ч, а 30-сильная «Планета-Спорт» всего 140, а не 300? Почему скорость растет не пропорционально мощности? И можно ли заменив 16-дюймовое колесо на 19-дюймовое увеличить скорость? Колеса менять сложно. Проще менять звездочки в цепной передаче. Когда-то, по простительной незрелости лет, мы тоже пытались увеличить скорость таким способом. На «Яву-350» модели 360/00 вместо стандартной звездочки с 17-ю зубьями втыкали звездочку с 19-ю зубьями, — ребята были, само собой, грамотные, так что уже в уме ухитрялись подсчитать, что скорость возрастет на добрых 12%.

И что же? Результат оказался более чем плачевным. Мы обзавелись мотоциклом узко специального назначения, — он здорово ходил на крутых спусках, под гору. А насчет наоборот. — и вспомнить противно! Даже на горизонтальной трассе скорость ощутимо упала, мотор явно не в состоянии был выйти на обороты максимума мощности — «не тянул». Вялый разгон, чувствительность к встречному ветру, нежелание возить пассажира — вот портрет нашего «усовершенствованного» мотоцикла.

○ В наличии новые скутеры Sym в Москве с доставкой до вашего региона! Большой выбор. Гарантия лучшей цены!

Опытные мотоциклисты, авторитеты объясняли дело вполне доходчиво: «Раз чехи поставили 17 зубьев, значит — так надо, и не фиг тут. «

Итак, что же это за штука такая — мощность? Это, как известно, способность машины, человека, лошади и т.д. выполнить некую работу в течение секунды, — например, поднимая груз весом 10 кг на высоту 1 метр за секунду, придется развить мощность в 10 килограммометров в секунду. Если уменьшить в этом примере вес до 5 кг, но поднять его за секунду на 2 метра, мощность потребуется та же. Но выходит, что использовать ее можно по-разному. Чем не иллюстрация к работе коробки передач? На низшей передаче скорость невелика, но при повышенной тяговой силе, на высшей скорость больше, но тяговая сила меньше.

В инструкциях обычно указывается эффективная мощность мотора. Так общепринято. Однако не вся эта мощность дойдет до заднего колеса, часть ее непременно потратится на преодоление сил трения в силовой передаче, перемешивание масла в коробке передач, смазки в кожухах цепи и т.д. В результате даже на достаточно хорошо сконструированных современных машинах эти потери достигают 15%, а то и более. Они, кстати, больше у нерадивого хозяина, который не заботится о смазке силовой передачи, ее исправности и правильной регулировке. Значит,тратится лишний бензин, понапрасну расходуются денежки. Если мощность мотора, например, равна 18 л.с., реально «крутят» заднее колесо максимум сил 15-15,5.

Кроме сил трения в трансмиссии, часть мощности поглощается генератором мотоцикла, — правда, она невелика. На мотоциклах с водяным охлаждением часть мощности тратится на работу помпы, при наличии принудительного воздушного охлаждения часть мощности «съедает» вентилятор. Мы же здесь рассматриваем простой мотоцикл, на котором кроме генератора, других нахлебников нет.

Если в инструкции вы увидите, что мощность указана в непривычных кВт (киловаттах), это не должно вас смущать, — таковы современные требования. Пересчет несложен: 1 л.с. численно равна 0,736 кВт. Действующие на мотоцикле силы, включая его вес, могут измеряться не в килограммах, а в ньютонах. Ну и что? 1 кг равен 9,81 Н. И все! Крутящий момент, соответственно, измеряется не в привычных килограммометрах (кгм), а в ньютон-метрах (Нм). Это тоже сути дела не меняет, как в знаменитом мультфильме про 38 попугаев. Поэкспериментируем (мысленно) с мотоциклом. С открытым на 1/4 дроссельным золотником разгоняем мотоцикл во всем, доступном ему при этом, диапазоне оборотов, регистрируя с помощью неких приборов крутящий момент и мощность. Они меняются с оборотами, — при малом числе оборотов мощность, то есть способность мотора производить полезную работу, невелика, с увеличением числа оборотов она возрастает, а при каких-то оборотах достигает максимума, за которыми уже падает.

Нанеся точки на график, получим, кривую зависимости мощности (или крутящего момента, если хотите) от числа оборотов при фиксированном положении дросселя. Это так называемая скоростная характеристика двигателя для выбранного положения дросселя. Таких «частичных» характеристик вы можете построить сколько угодно, — для разных положений дросселя.

Кривые имеют точки своего максимума при каком-то числе оборотов. Максимум крутящего момента соответствует ситуации, когда среднее эффективное давление в цилиндре наибольшее, — оно зависит от качества продувки цилиндра, наполнения его свежим зарядом смеси, от полноты сгорания, тепловых потерь.

Но сам по себе крутящий момент еще не есть мощность. Чтобы при этом производилась какая-то работа, коленвал должен вращаться. Если вы, не запуская двигатель, нажимаете на пусковой рычаг, в цилиндре происходит сжатие,- уже можно говорить о том, что к коленвалу приложен некоторый крутящий момент,- а мощность равна нулю. Не так ли? При оборотах ниже какого-то предела мотор не сможет работать, уже хотя бы потому, что на столь низкой скорости воздушного потока в карбюраторе (ведь дроссель-то открыт!) нормальное распыление топлива становится невозможным. Поэтому кривые начинаются не от нуля оборотов.Мощность с ростом оборотов увеличивается не беспредельно, она тоже имеет точку максимума, но обороты, ей соответствующие, не те, что у максимума момента: мощность и момент (соответственно в л.с. и кгм) связаны формулой: N= Мкр х n / 716,2 где n — число оборотов в минуту.

Продолжим эксперимент, на сей раз при полностью открытом дросселе. Теперь получается так называемая внешняя скоростная характеристика, — действительно, за ней, за этой своеобразной границей, данному мотору не бывать, — это уже его предельные возможности. Поэтому часто соответствующие мощность и крутящий момент называют располагаемыми, внешняя скоростная характеристика мотора показывает, какими мощностными ресурсами он располагает, когда к нему будут предъявлены определенные требования. Кто их предъявит? Или. что их предъявит?

Если, не жалея мотора, разгонять его при различных положениях дроссельного золотника до максимально достижимых оборотов, можно найти интересные точки графика. Например, при небольшом открытии дросселя на нижней передаче мотоцикл разгонится до какой-то скорости — дальнейший разгон невозможен, так как это означало бы, что располагаемая мощность меньше потребной для езды с этой скоростью. и вошло бы в противоречие с уже упоминавшимся, незыблемым Законом сохранения энергии.

Потребная мощность растет с ростом скорости, поэтому при большем открытии дросселя можно разгоняться до скорости побольше. Еще большее открытие даст скорость соответственно еще большую. Наконец: если дроссель открыть полностью, мотор выйдет на высокие, иногда просто опасные, обороты, при максимальной скорости для данной передачи. Соединив полученные предельные точки кривой, мы получим зависимость потребной мощности для движения мотоцикла от скорости движения. Сразу же надо вам понять: потребная мощность — это параметр, целиком зависящий от сил сопротивления движению мотоцикла, — она связана с размерами мотоцикла, весом и так далее. «Тягло», то есть тип двигателя, его мощность и т.д. тут вне игры, — оно значения не имеет. Если вместо мощностей на графике показать силы: располагаемую тяговую силу колеса и потребную для преодоления всех сопротивлений, то их точки пересечения дали бы те же значения оборотов и скоростей. Ведь сила тяги, крутящий момент и мощность связаны однозначной зависимостью.

О каких силах сопротивления идет речь? Прежде всего — это сила сопротивления воздуха, наш и ваш главный враг, вечно мешающий достижению рекордных скоростей. Почему — главный? Потому что растет пропорционально квадрату скорости. Увеличивая ее вдвое, силу сопротивления мы увеличиваем вчетверо. И еще — потому, что сам мотоцикл, мягко говоря, к числу хорошо обтекаемых тел не относится. Это свойство оценивается так называемым коэффициентом аэродинамического сопротивления Сх, зависящим лишь от формы тела, движущегося в воздухе. Этот коэффициент входит в формулу расчета силы сопротивления воздуха: Pw =Сх х S х р х (V2 )/ 2

Здесь р — плотность воздуха, которую для стандартных расчетов принимают равной 0,125 кг см2/м4″; S -лобовая площадь мотоцикла, включая сюда водителя, пассажира и груз. Для высоких скоростей иметь большой рост и широкие плечи невыгодно! Наконец, V — скорость движения в м/сек, V2 — скорость в квадрате.

При нормальной, комфортной, «сидячей» посадке мотоциклиста коэффициент Сх достигает значений 1,1-1,2 и очень редко снижается до единицы. При полулежачей, в которой мы мало ездим, он может уменьшиться до 0,7-0,9. Между тем — сравните! — у скромных стареньких «Жигулей» этот коэффициент составляет около 0,43. Словом, как ни любим мы мотоцикл, особо быстрая езда на нем, говоря строго, энергетически невыгодна, — слишком много бензина горит впустую. Вы можете столкнуться с ситуациями, когда идущий рядом пятиместный автомобиль расходует бензина меньше вашего мотоцикла-одиночки. А уж о езде с боковым прицепом и говорить нечего. Вот вполне официальные данные (журнал «Мотор-ревю» № 9 за 1980 г.): расход топлива мотором «Явы-634» при скорости 90 км/час составлял 5 л/100 км, а при скорости 100 км/час — уже 8,5 л/100 км пути. Это — без бокового прицепа.Измерения выполнялись не как-нибудь «на глазок», а в строгом соответствии с общепринятыми требованиями, на предприятии «Ява». Лобовая площадь мотоцикла-одиночки с водителем может лежать в пределах 0,4-0,6 кв.м, -большие или меньшие показатели встречаются не часто.

Имея такие исходные данные, например, как Сх=0,9 и S =0,5 кв.м, вы вряд ли удержитесь от соблазна рассчитать силы воздушного сопротивления для разных скоростей движения,- например, 5, 10, 15, 20, 25, 30, 35 и 40 м/сек. И окажется, что при скорости 10 м/сек сила сопротивления воздуха еще невелика, — всего 2,8 кг. Но при 20 м/сек она составляет 11,2 кг, а при 30 м/сек — уже 25,2 кг. При 35 м/сек или 126 км/час эта сила равна уже 34,5 кг! Не зря ветерок стаскивает вас с сиденья! Сила сопротивления воздуха действует постоянно за исключением случая езды с попутным ветром, скорость которого равна скорости вашего движения, — тогда она равна нулю. Если скорость попутного ветра больше скорости движения, действующую аэродинамическую силу уже надо учитывать со знаком минус, одновременно понимая, что в этом случае величина коэффициента сопротивления иная, чем при обдуве спереди.

Другая сила, постоянно действующая тоже в качестве сопротивления, это сила сопротивления качению колес. Вычисляется просто, как произведение полного веса машины на коэффициент сопротивления качению. Этот коэффициент, строго говоря, меняется в зависимости от типа и состояния шины, давления в ней, скорости качения, нагрузки, состояния дороги, температуры среды при испытании. Он увеличивается при снижении давления в шине, причем в этом случае он более чувствителен к величине скорости и может существенно увеличиваться уже при скоростях 90-100 км/час, не говоря о больших. Напротив, шина, несколько «перекаченная», легче катится при достаточно высоких скоростях.

При простых, не требующих высокой точности, расчетах коэффициент принимают постоянным, равным 0,015. Значит, мотоцикл с полным весом 220 кг (150 кг плюс 70 кг веса водителя) испытывает на ходу сопротивление качению Рf = 220 х 0,015 = 3,3 кг. Вообще же коэффициент может изменяться в значительных пределах, возрастая, например, на булыжной мостовой до 0,015-0,03, на грунтовой дороге до 0,05-0,15, а на рыхлой песчаной — до 0,2-0,3 и даже больше.

Что происходит на подъеме дороги? — Появляется еще одна сила — сопротивление подъему, вычислить которую несложно, — умножаем полный вес машины на синус угла подъема. Да вот где его взять синус? Оказывается, это просто. На реальных дорогах углы спуска или подъема, как правило, относятся к малым, для которых справедливо правило: синус угла равен его тангенсу и самому углу, измеренному в долях радиана. Неужто сложно? Тогда еще проще: для угла подъема в 5%, указанного на дорожном знаке, синус или тангенс равны 0,05. Для угла в 3% — соответственно 0,03. И так далее. Поняли?

Значит, на подъеме в 5% движению мотоцикла весом 220 кг противодействует сила Ра = 220 х 0,05=11 кг. На спуске же сила в 11 кг уже помогает движению машины, — желающие легко могут вычислить, зная нужные формулы, что в этом случае лишь при скорости около 60 км/час сумма сил воздушного сопротивления и сопротивления качению уравновесит эти 11 килограммов даровой «тяги»! Если спуск достаточно длинный, мотоцикл на «нейтрали» разгонится до этой скорости.

Зная силы, можно, при необходимости, определить величины потребных мощностей, — при этом мощности, затрачиваемые на преодоление сопротивления качению и подъему, вычисляются как произведения соответствующих сил на скорость, а значит, они пропорциональны скорости. Иначе ведет себя по скорости мощность, потребная на преодоление воздушного сопротивления, — если сила сопротивления пропорциональна квадрату скорости, то мощность — уже кубу. Иначе говоря, мотор мощностью сил в десять позволяет обыкновенному дорожному мотоциклу развивать скорость около 100 км/час. Для удвоения этой скорости нужно при сохранении всех прочих условий задачи повысить мощность в 8 раз, то есть сил до восьмидесяти. Так как на деле при таком двигателе мотоцикл неизбежно «потяжелеет», то реально мы сталкиваемся с еще более мощными моторами, — при этом не надо забывать, что со скоростью 200 км/час никто сидя не поедет, — трудновато будет удержаться! Такова здесь безжалостная, бескомпромиссная физика: сила сопротивления воздуха достигнет — при сохранении прежних величин площади и коэффициента! — 87 килограммов, значительная частьо которых придется на тело водителя. Попробуйте-ка. Реально с такими скоростями можно ехать, если мотоцикл оснащен обтекателем, — хотя последний на громоздком дорожном мотоцикле почти не влияет на коэффициент Сх в смысле его уменьшения, водитель, прячась за щитком, избегает прямого напора потока воздуха, доверяя это дело машине.

Теперь, зная величины потребных мощностей, соответствующих различным скоростям, мы вправе нанести точки на график (рис.2). Любопытная картина! Езда со скоростью 40 км/час требует мощности всего около 1 л.с., — уверен, многие мотолюбители попросту удивятся! За удовольствие ехать со скоростью 80 км/час придется отдать 5,1 л.с., за 100 км/час — 9,2 л.с, а за 120 км/час — 15,4 л.с. Изменение не совсем «по кубу», так как это суммарная мощность =-Мw+Мf. Здесь важно не блуждать среди трех сосен, — по закону куба меняется лишь мощность , затрачиваемая на преодоление сопротивления.

Вот пример «бухгалтерии» для скорости 200 км/час: Nw = 64,5 л.с., Nf = 2,5 л.с. (несколько заниженная величина, так как на этой скорости коэффициент f, как правило, уже несколько выше, чем 0,015). Другими словами, сумма этих мощностей составила бы около 67-68 л.с. С учетом 15-процентных потерь в трансмиссии мотор должен развивать мощность около 80 л.с. Но, напомним, — реально на такой скорости никто «сидя» не ездит, поэтому либо истинная скорость еще выше, либо затрачиваемая мощность несколько меньше. Надо четко это представлять.

А каковы же возможности самого двигателя, — отнюдь, конечно, не беспредельные?

Вооружимся для примера характеристикой одного очень популярного у нас в 60-х годах мотоцикла. Максимальная мощность составляла 18 л.с. при числе оборотов 5250 об/мин. Радиус качения 16-дюймового колеса — 0,27 м, — отсюда нетрудно определить, что при общем передаточном числе высшей передач I(4) = 4,5 указанному числу оборотов соответствует скорость около 119 км/час. Найдя эту величину (крайне важную!), вы фактически связали воедино две поначалу независимые вещи — то, что нужно для движения мотоцикла, и то, чем он реально располагает.

(Передаточные числа на других пе-редачах: I(1) = 14,3; I(2) = 8,9; I(3) = 6,4. Они нам тоже впоследствии понадобятся).

При потерях в трансмиссии около 15% на заднее колесо будет передана мощность в 15,3 л.с.

Кривая Nпотр. пересекает кривую Nрасп.вед.кол. в точке N1 , вблизи вершины. Опустив из нее вертикаль до пересечения с осью «V,n», вы увидите, что максимальная скорость соответствует как раз числу оборотов 5250 в минуту.

Точка пересечения кривых Nпотр и Nрасп.вед.кол. дает представление о максимальной скорости машины, — на горизонтальной дороге при безветрии около 120 км/час. Очень важно понять, что именно мощность (способность машины произвести определенную работу за секунду) характеризует скоростные возможности транспортного средства, — заметьте, что при правильном выборе передаточного числа, размеров колеса, шины и т.д.точка пересечения этих двух кривых обязательно на вершине кривой располагаемой мощности или очень близко от нее. Значит, мощность машины наиболее полно реализуется в скорость движения. Хотите в этом убедиться?

Вообразите, что на выбранном нами мотоцикле использована ведущая звездочка с 17 зубьями, а мы — хотя бы из любопытства! — ставим вместо нее другую, с большим числом зубьев. Другой вариант — вместо 16-дюймового ведущего колеса ставим большое, 19-дюймовое. Авось, скорость поднимем, да?!

Внимание! Кривая Nпотр. никак от наших манипуляций не зависит, зато кривую Nрасп.вед.кол. мы словно растягиваем по горизонтали, — в пропорции с увеличением звездочки или колеса. Верхушка кривой, те самые 15,3 л.с., сдвинется вправо, а что станет с точкой пересечения кривых? Это показываем на рис.3. Видите, — точка пересечения теперь стала левей прежнего положения! Скорость упала. Сама кривая Nрасп.вед.кол. теперь сблизилась с кривой Nпотр. почти везде, что говорит и об ухудшении разгонных, динамических характеристик машины, но их все-таки лучше оценивать не по мощностям, а по тяговым силам.

А если сделать наоборот? Вместо фирменной звездочки поставить меньшую? Теперь кривую N сожмем по горизонтали, а точка пересечения кривых. снова левей исходной! Зато лучше станет динамика разгона мотоцикла, — кривая располагаемой мощности стала выше относительно первоначального положения.

Итак, если за счет передаточного числа и размеров колеса окружная скорость последнего правильно увязана с мощностью мотора, это обеспечивает максимум скорости самого мотоцикла. Улавливаете, в чем тут разница? Если нагрузка на колесо мала, спидометр может вам показать фантастическую «скорость», — поднимите мотоцикл на подставку, пустите двигатель и включите 4-ю передачу, — но то, что вы увидите, к реальным возможностям машины никакого отношения не имеет.Итак, мы хотим разобраться еще с динамическими возможностями мотоцикла, то есть оценить его способность разгоняться, брать подъемы и т.п.

В этом случае оперировать с мощностями нерационально. Надо перейти к силам на ведущем колесе, — опять-таки располагаемой, за которую в ответе мотор, и потребной, зависящей от условий движения. Имея кривую зависимости Nрасп.вед.кол., можно начертить кривую располагаемого крутящего момента на заднем колесе, — по известной формуле: M = 716,2 Nрасп.х n, где n — число оборотов ведущего колеса в минуту, а Мрасп. — располагаемая мощность в «л.с.» При нашем расчете мы именно так и сделали, но кривую крутящего момента на график не наносим, считая это операцией промежуточной. Вместо этого изобразим кривую изменения располагаемой силы тяги на ведущем колесе, — это ведь очень просто, если момент известен, а радиусом колеса — 0,27 м — мы уже задались раньше. В таком случае тяговая сила колеса равна: Ррасп.вед.кол.=Мкр /0,27 (кг).

Например, при максимальной мощности (15,3 л.с. при оборотах колеса 5250:4,5 = 1166 об/мин) крутящий момент Мкр = 716,2 х 15,3/1166 = 9,45 кгм. Соответствующая этой ситуации тяговая сила колеса составляет: Ррасп.вед.кол.= 9,45/0,27 = 35 кг.

Таким же образом находим значения располагаемой тяговой силы для любых значений скорости и оборотов, — результатом чего и является кривая расп.вед.кол. на 4-й передаче (см рис.1).

Здесь же, вернувшись к вычисленным раньше величинам потребных тяговых сил, рисуем кривую Рпотр, объединяющую воедино силу сопротивления воздуха и качения колес, — точка ее пересечения (Р|) с кривой Ррасп.вед.кол, естественно, приводит нас все к той же максимальной скорости, то есть около 120 км/час. Кривые тяговых сил теперь уже совершенно наглядно дают картину динамических возможностей данного мотоцикла на 4-й передаче. Например, вы видите, что на различных скоростях величина отрезка А-Б меняется, — наибольшая она в диапазоне скоростей около 50-60 км/час. Значит, здесь имеется наибольший «запас» тяговой силы, который мы можем использовать для разгона машины, и, если тут дать полный газ, будет достигнуто наибольшее ускорение для данной передачи. Рост скорости ускорение уменьшает, — особенно вблизи максимальных скоростей. При скорости же 120 км/час запас тяговой силы исчерпывается, — разгон прекращается, скорость максимальная.

Можно ли ее как-нибудь увеличить? Для этого нужно каким-либо способом уменьшить потребную силу тяги. Например, посмотрим, что дает езда с попутным ветром, имеющим скорость, скажем, 20 км/час — вполне обыденную. Это далеко не ураган. Что произойдет с кривой Рw? Она просто сдвинется, как целое, вправо на 20 км/час по оси «V». А сила Рf к ней также добавится, как и в исходном случае. Теперь точка пересечения кривых — P2 — показывает, что скорость может возрасти примерно до 130 км/час. (Отнюдь не на 20 км/час, как на первый взгляд может показаться!)

Опыт изучения данного вопроса показывает, что психология среднестатистического «рокера» имеет одну особенность: из всех своих заездов он запоминает лучший результат! Как видите, попутный ветерок может крепко польстить вашему мотоциклу и его мотору. Не здесь ли корень многих неофициальных наших рекордов?!

Встречный же ветер — серьезный враг, в нашем случае он снижает скорость до 105 км/час. Видите, влияние встречного и попутного ветра неравноценно, — причина в меняющемся наклоне кривой Ррасп.вед.кол. на разных скоростях, — встречный отнимает больше, чем дает попутный. Что касается рокеров, они не имеют привычки запоминать не лучшие результаты!

Наши и ваши знания теперь позволяют оценить и влияние спуска и подъема на скорость, — но рисовать эти кривые на том же графике не стоит,- он будет чрезмерно загроможден. Картина похожа на влияние ветра. Например, движение на достаточно длинном спуске в 5% может дать увеличение скорости до 131 км/час, а на таком же подъеме — снизить ее до 103 км/час. Опять спуск дает меньше, чем отбирает подъем. В целом, влияние рельефа местности на скорость машины, как видим, немалое. Возвращаться к вопросу о рокерах и их привычках больше не будем,- вы и так все поняли. Таким образом, сопоставление тяговых сил ведущего колеса — располагаемой и потребной — дает нам возможность оценки динамических возможностей машины. Но, если сравнивают два мотоцикла — разной мощности, размеров, веса и т.п. — наш подход тоже не вполне удобен. Лучше поступить по-другому. Для этого вычисляем графически величины отрезков А1-Б для разных скоростей, а затем, поделив их величины в «кг» на вес мотоцикла, получаем некую относительную величину — так называемый «динамический фактор», характеризующий возможности любого мотоцикла, независимо от его веса или мощности.

Полученные значения наносим на график (см. рис.2).

Обратим снова внимание на 4-ю передачу (кривая «4»). Наибольшее значение «D» соответствует скоростям 50-60 км/час, — как мы уже раньше отмечали, тут наибольший запас тяговой силы. Так как динамический фактор, как и коэффициенты сопротивления качению и подъему, выражается в «%», можно показать, что на горизонтальной асфальтовой трассе движению нашего мотоцикла отвечает горизонтальная линия, проведенная из точки 1,5%, — это минимальное сопротивление, которое испытывает мотоцикл даже на скорости, близкой к нулю. Значит, максимальная скорость определится точкой пересечения кривой «4» с линией 1,5%. Смотрим. Так и есть. Вот они — те же 120 км/час. Любые же значения «D», лежащие выше 1,5%, могут быть использованы для разгона или движения с какой-то скоростью, преодоления подъема или встречного ветра. В нашем случае на 4-й передаче вершина кривой «4» находится на уровне 12%. Что это значит? — Можно, например, сказать, что наибольший, теоретически преодолеваемый на этой передаче, угол подъема равен 12-1,5=10,5%. Эту точку называют критической, — реально «удержать» машину на ней трудно, — увеличение скорости невозможно, а уменьшение сразу повлечет остановку мотора, — он «не вытянет» на подъеме. А вот, например, на подъеме в 8,5% двигаться уже можно, — ему отвечает горизонталь от точки 10% вертикальной оси. Тут, как видите, можно достигнуть скорости 86 км/час — если она почему-либо станет снижаться, запас «D» увеличивается, достигнет максимума при 55 км/час и только потом падает. Вплоть до этого мгновения мотор, как говорят, «приспосабливается» к меняющимся условиям, — например, вместо подъема 8,5% машина вышла на участок с подъемом на 1% больше, — скорость упадет до 78 км/час — и снова наступит равновесие силы сопротивления и силы тяги. И так — до критической точки — 12% или 55 км/час.

На подъеме 5% (горизонталь от точки 6,5% вертикальной оси) максимум скорости, как и ранее мы видели, соответствует 103 км/час. Вершина кривой «4» дает нам представление также о максимально возможном ускорении мотоцикла на данной передаче, — при безветрии на горизонтальной дороге этому соответствует опять-таки запас «D» в 10,5%. Ускорение вычисляется так: i = 100 х D-g х Qвм , где D — динамический фактор в 0%, g — ускорение свободного падения, т.е. 9,81 м/сек2. Коэффициент Qвм учитывает влияние на ускорение вращающихся масс, вспомните — чем массивней колесо, тем трудней «раскрутить» его. Для нашего мотоцикла и 4-й передачи можно принять, по результатам исследований ВНИИмотопрома, Qвм = 1,1 (на низших передачах этот параметр увеличивается, в зависимости от особенностей машины, до 1,3-1,7). Итак, на 4-й передаче максимальное ускорение равно примерно 0,94 м/сек2 — желающие могут проверить. А на низшей, первой? Для дальнейших оценок надо график расширить, нанеся на него кривые значений «D» на остальных передачах, включая первую. Как видим, с понижением передач запас «D» резко возрастает, показывая, что мотоцикл на них способен преодолевать гораздо большие силы сопротивлений, — будь это подъемы, песчаные трассы, встречный ветер и т.д. На 1-й передаче запас «D» в нашем случае равен 54,5-1,5=53%. Это соответствует скорости около 29 км/час.

Значит, если у мотоциклиста появится желание испытать способности машины на подъеме, желательно не «заваливать» скорость ниже этого значения. В то же время ясно, что теоретически предельным углом подъема, доступным на 1-й передаче, является угол с синусом 0,53 — это угол примерно в 32°. Если же использовать запас динамического фактора для разгона, то и на горизонтальной дороге при безветрии максимальное ускорение на 1-й передаче может составить, ориентировочно, 4 м/сек2. Не ракета, конечно, но все-таки довольно неплохо для скромного мотоцикла. Можно ли превысить эти показатели? Кратковременно — да. Например, после предварительного разгона можно одолеть и более крутой, чем вычислено, подъем, — но скорость будет падать, — значит, тут важно, чтобы подъем был достаточно коротким, а мотор не успел бы заглохнуть. Можно кратковременно получить и значительно большее (примерно в 2 раза) ускорение, если при старте с места сначала раскрутить коленвал до повышенных оборотов при выключенном сцеплении, а потом его резко включить. В этом случае старт осуществляется не столько за счет мощности мотора, сколько за счет накопленной коленвалом и его маховиками кинетической энергии.

Особенно хорошо этот прием выполняется на мотоциклах с тяжелым коленвалом, — типичный представитель этого направления в технике — двухцилиндровая «Ява-350» с очень массивным коленвалом. При стартовом броске ускорение мотоцикла достигает почти 8-9 м/сек2, мотоцикл отрывает переднее колесо и — простите! — при чрезмерном самомнении «гонщика», не подкрепленном тренировками, может опрокинуться назад. Новичкам не вредно это помнить. Влияние веса мотоцикла можно оценить сравнением кривых «1» — сплошной для исходной величины 220 кг и штриховой для случая езды с пассажиром — 290 кг. Во втором случае максимальный угол подъема не превышает 24,5 градусов, а максимальное ускорение — 3 м/сек2. На рис. 2 мы показали также кривые «D» для случаев движения по ветру и против ветра при скорости его 20 км/час. Вы можете делать соответствующие выводы. Ветер оказывает не только сильное влияние на скорострные показатели машины, но и на показатели динамические. В нашем примере попутный ветер увеличивает запас «D» с 10,5 до 12,5%, а встречный уменьшает до 8,5%. Желающие могут сами прикинуть, насколько будет изменяться ускорение мотоцикла или его способность преодолевать подъемы (последнее достаточно наглядно показывают только что приведенные цифры).

Некоторые мотолюбители считают, что езда на высшей передаче — чуть ли не обязательное условие езды вообще! На деле же каждый может сталкиваться с ситуациями, когда даже по шоссе с хорошим покрытием приходится ехать на пониженных передачах (чаще — на 3-й). Например, мотоцикл предельно перегружен плюс крутой, затяжной подъем плюс встречный ветер. Что ж, — и такое порой бывает. При этом совсем не обязательно, как об этом кое-кто думает, непременно снижать скорость движения настолько, чтобы при этом не превысить обороты 5250 в минуту! Ничего страшного (по крайней мере, для двухтактного мотора) не будет, если вы их не надолго превысите процентов на десять, чтобы одолеть подъем. В нашем примере данным оборотам на высшей передаче соответствует скорость 120 км/час, на 3-й — 85 км/час. Если по условиям движения выгодней держать, скажем, 90 км/час на 3-й передаче, — держите! А кончится подъем, — легко, без потерь, перейдете на высшую. Вообще же, как показывает кривая «3», максимальная скорость на 3-й передаче составляет около 99 км/час при 6140 об/мин). Что же в итоге мы получили?

Знатоки, вероятно, уже заметили, что в качестве мотоцикла-прототипа для наших изысканий был выбран чехословацкий — «Ява-350» середины 60гх годов, — мы постарались использовать именно его характеристики мощности, крутящего момента двигателя, сохранить передаточные числа и т.д. Некоторыми данными (в частности, внешней характеристикой двигателя при числах оборотов выше 5500 об/мин) мы не располагаем, — здесь характеристика была нами продолжена до оборотов почти 7 тысяч в минуту, так сказать, волевым решением. Но можно сказать, что оно не было совсем необоснованным, а учитывало опыт моторостроительных фирм. Обратившись к официальному, заводскому описанию «Явы-350» модели 360/00, нетрудно убедиться в том, что вычисленные нами технические характеристики очень близки к реально замеренным. Итак, каковы выводы? — Скоростные возможности машины — при условии правильного выбора передаточного числа от коленвала к колесу — определяются максимальной мощностью двигателя и силами сопротивления.

Важно понять, что любые попытки изменения передаточного числа снижают максимальную скорость, причем наиболее безграмотным оказывается уменьшение передаточного числа, — тут снижаются и скорость, и динамичность машины. Напротив, повышение передаточного числа нередко заслуживает внимания. Например, на рис.3,а,б показаны характеристики для ведущих звездочек с 17 зубьями (стандартная для одиночки — «Явы») и с 16 зубьями (эта предназначена, вообще говоря, для езды с коляской).

Как видите, «одиночка» с уменьшенной звездочкой почти полностью сохраняет максимальную скорость, — кого волнует разница в 1 км/час?! Но насколько выгодней выглядит график динамического фактора! От минимальной скорости до примерно, 117 км/час мотоцикл становится более приемистым, но особенно — на средних скоростях, что очень важно в условиях интенсивного движения, на дорогах с крутыми подъёмами, поворотами и так далее. Например, подъем в 10,5%, практически недоступный на 4-й передаче стандартному мотоциклу, с уменьшенной на 1 зуб звездочкой преодолевается в диапазоне скоростей 33-74 км/час! Небо и земля, не так ли? Особенно полезно знать это мототуристам. Мотоциклы, на которых ездят мотокроссмены, к примеру, заведомо не предназначены для достижения максимальных скоростей, — для них куда важней именно динамические характеристики, поэтому передаточные числа на них обычно намного выше чисто «шоссейных», зато такой мотоцикл едва ли не на любой передаче позволяет уверенно брать крутые подъемы, двигаться с поднятым передним колесом и так далее. Кто-нибудь спросит: почему же заводы, создавая шоссейный мотоцикл-одиночку, все-таки не торопятся увеличивать передаточные числа? Не будем забывать, что понятие «хороший мотоцикл» подразумевает не только достаточные скорости или динамику разгона. Нужно еще иметь разумный расход топлива, достаточное охлаждение двигателя, достаточно большой срок его службы и еще многое другое. Иными словами, конструкция должна быть оптимальной. Когда же мотоцикл куплен кем-то, его владелец вправе вносить в конструкцию те изменения, которые он считает для себя полезными. Например, кто-то, купив стандартную «Планету», привез ее в горы и там ежедневно эксплуатирует, — характер дороги таков, что почти постоянно заставляет пользоваться пониженными передачами. Важно понять, что в этом случае стандартная конструкция, разработанная для равнинных трасс, уже не оптимальна! В частности, расход бензина может оказаться больше, чем в случае сознательного уменьшения ведущей .звездочки, — именно потому, что двигатель при повышенных сопротивлениях движению заставляет часто ездить на низших передачах. Уменьшив звездочку на 1-2 зуба, можно попасть как раз в «золотое яблочко», — и ездить станет легче, и расход бензина уменьшится. Что горы? Похожая ситуация может поджидать и того, кто постоянно ездит, скажем, по таежным тропам, грунтовым, песчаным трассам и т.д. Еще один вопрос: оппозит. При привращении его в «одиночку» общая масса мотоцикла уменьшается. Следовательно можно уменьшить передаточное отношение главной передачи, заменив штатную главную пару с отношением 4.62 на «скоростную» с отношением 3.89. Это увеличит максимальную скорость, улучшит режим работы двигателя за счет уменьшения оборотов двигателя на средних скоростях.

В общем, вариантов много. И каждый должен сам решить, что ему нужно и нужно ли вообще.

Двигатель LIFAN 182F 11,0 л.с. бензиновый 4-х тактный

4-х тактные двигатели для мотоблока 4-х тактные двигатели для мотоблока. Фото N2 4-х тактные двигатели для мотоблока. Фото N3

Двигатель для мотоблоков, культиваторов, генераторов, самоделок и другой мототехники. Двигатель имеет широкий спектр применения. Является аналогом японского двигателя HONDA (Хонда). Двигатель бензиновый 4-х тактный с воздушным охлаждением и верхним расположением клапанов отлично зарекомендовал себя в качестве надежного, универсального, неприхотивого двигателя, и получил признание во всех отраслях, где бы он не применялся. Свободное наличие запчастей и расходников делает его ещё привлекательнее, особенно это важно когда остановка работоспособности двигателя крайне не желательна.

Внимание! Остерегайтесь дешёвых подделок.

Технические характеристики:

Тип двигателя Бензиновый, 4-х тактный, одноцилиндровый, с воздушным охлаждением
Рабочий объем двигателя, (см3) 337
Мощность двигателя, (л.с.) 11
Максимальный крутящий момент, (НхМ)/Скорость вращения, (Об./мин.) 21/3600
Система запуска Ручная
Система зажигания Бесконтактная
Объем топливного бака, (л) 6,5
Объем масляного картера, (л) 1,1
Диаметр вала, (мм) 25
Габаритные размеры ДхШхВ, (мм) 403х449х440
Масса, (кг) 32

Характеристики

Тип оборудования Двигатель
Страна производства Китай
Расположение вала горизонтальное
Комплектация Инструкция по эксплуатации, Свечной ключ
Расход топлива, г/кВт.ч 374
Диаметр цилиндра, мм 82
Ход поршня, мм 64
Степень сжатия 8
Крутящий момент, Н.м 21
Система зажигания бесконтактная
Тип запуска ручной стартер
Объем масла в двигателе, л 1.1
Катушка освещения нет
Диаметр вала, мм 25
Тип двигателя бензиновый, 4х тактный
Объем двигателя, куб. см 337
Мощность, л.с. 11
Объем топливного бака, л 6.5
Гарантия 1 год
Вес, кг 35

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *