Как влияет степень сжатия на мощность и экономичность двигателя
Перейти к содержимому

Как влияет степень сжатия на мощность и экономичность двигателя

  • автор:

Расчетное исследование влияния степени сжатия на эффективные показатели дизельного двигателя Текст научной статьи по специальности «Механика и машиностроение»

Аннотация научной статьи по механике и машиностроению, автор научной работы — Гарипов Марат Данилович, Назмутдинова Гульнара Рамилевна, Сакулин Роман Юрьевич

Приведены результаты расчетного исследования влияния степени сжатия на эффективные показатели четырехтактного дизельного двигателя. Определено значение наиболее приемлемой для исследуемого двигателя степени сжатия .

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Гарипов Марат Данилович, Назмутдинова Гульнара Рамилевна, Сакулин Роман Юрьевич

Рациональная степень сжатия двигателя с унифицированным рабочим процессом

Расчетное исследование возможности реализации сверхвысокой степени сжатия в поршневом двигателе внутреннего сгорания

Качественное регулирование нагрузки в многотопливном ДВС с искровым воспламенением
Рабочий процесс перспективного поршневого ДВС
Характеристики двухтактного двигателя с искровым воспламенением при работе на дизельном топливе
i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Numerical study of compression ratio influence on effective parameters of diesel engine

Results of numerical study of compression ratio influence on effective parameters of four stroke diesel engine are performed. The value of the most acceptable compression ratio for researched engine is determined.

Текст научной работы на тему «Расчетное исследование влияния степени сжатия на эффективные показатели дизельного двигателя»

М. Д. Гарипов, Г. Р. Назмутдинова, Р. Ю. Сакулин

РАСЧЕТНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ СТЕПЕНИ СЖАТИЯ НА ЭФФЕКТИВНЫЕ ПОКАЗАТЕЛИ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Приведены результаты расчетного исследования влияния степени сжатия на эффективные показатели четырехтактного дизельного двигателя. Определено значение наиболее приемлемой для исследуемого двигателя степени сжатия. Степень сжатия; поршневой ДВС; эффективный КПД; коэффициент избытка воздуха

Исторически сложились два основных направления в организации рабочего процесса поршневых двигателей. Это воспламенение предварительно подготовленной смеси искрой и воспламенение впрыскиваемого топлива от сжатия. Граница размежевания этих двух видов проходит по степени сжатия: верхняя со стороны бензиновых »10, нижняя со стороны дизелей » 15.

Ограничение по максимальной степени сжатия в двигателях с искровым воспламенением обусловлено тем, что к моменту воспламенения в цилиндре такого двигателя находится уже подготовленная гомогенная смесь, в которой при повышенных степенях сжатия возникает детонация.

Дизельные двигатели, наоборот, для обеспечения самовоспламенения топлива требуют высоких степеней сжатия, что имеет свои негативные стороны. Повышенные величины максимального давления и жесткости сгорания цикла требуют более прочной конструкции двигателя и определяют увеличенные нагрузки на детали цилиндропоршневой группы, что приводит к повышенным механическим потерям и увеличению массы двигателя. Поэтому снижение степени сжатия в дизелях дало бы определенные преимущества. Однако это требует решения вопросов, связанных со смесеобразованием и воспламенением.

1. ПОСТАНОВКА ЗАДАЧИ

На кафедре ДВС Уфимского государственного авиационного технического университета получены предварительные экспериментальные результаты, указывающие на возможность осу-

Контактная информация: 8(347)272-84-05

ществления многотопливного бездетонационно-го рабочего процесса в широком диапазоне степеней сжатия (7-15) [1]. При этом имеется возможность реализации качественного регулирования нагрузки. Процесс реализован за счет искрового воспламенения впрыскиваемой вблизи верхней мертвой точки богатой топливовоздушной струи. В результате повышения давления и температуры, обусловленного сгоранием части топливовоздушной смеси, подожженной искрой, в несгоревшей части происходит (в случае применения низкооктановых топлив) многоочаговое воспламенение и сгорание, характерное для рабочего процесса дизельного двигателя. Такой процесс подвода тепла управляется за счет изменения угла опережения впрыска и момента подачи искры.

Поскольку в данном рабочем процессе устраняются ограничения по степени сжатия, возникает возможность выбора наиболее приемлемого ее значения для транспортного двигателя.

В качестве объекта исследования был выбран четырехтактный дизельный двигатель Д 65-Н, поскольку на базе этого двигателя планируется проводить часть экспериментальных исследований предлагаемого рабочего процесса.

Целью работы является расчетное определение влияния степени сжатия на эффективные показатели исследуемого дизельного ДВС.

2. МЕТОДИКА ИССЛЕДОВАНИЯ

Степень сжатия исследуемого двигателя в серийном исполнении составляет 17,3.

Расчеты осуществлялись в системе имитационного моделирования ДВС «Альбея», разработанной на кафедре ДВС Уфимского государственного авиационного технического университета. Система моделирования позволяет определить индикаторные и эффективные показатели двигателя в любой момент времени [3, 5, 6].

Для подтверждения адекватности модели были проведены расчеты параметров цикла и эффективных показателей исследуемого двигателя, которые были сопоставлены с данными индицирования и паспортными характеристиками. Условная продолжительность сгорания была определена из экспериментальных данных и составила 89 градусов угла п.к.в. Наилучшее совпадение расчетных и экспериментальных кривых давления и скорости нарастания давления в цилиндре было получено при значении показателя характера горения т = — 0,12.

Результаты сопоставления представлены на рис. 1 и в табл. 1.

-100 -8 Г* —«р-г-г £ -«0 -А 0 -20 _■) 0 * & 3 80 100

Угол поворота коленвала ср, град

Рис. 1. Сопоставление расчетной

и экспериментальной кривых давления и скорости нарастания давления (dP/dф) в цилиндре двигателя Д-65Н: 1 — давление в цилиндре, расчет; 2 — давление в цилиндре, эксперимент; 3 — скорость нарастания

давления (йР/й?ф), расчет; 4 — скорость нарастания давления (йР/й?ф), эксперимент

Т аблица 1 Сравнение расчетных и паспортных эффективных показателей двигателя Д 65-Н

Данные двигателя Ые, кВт ge, г/кВт-ч

Паспортные 44,13 0,251

Расчетные 48,83 0,246

Расхождение в расчетных и паспортных данных, приведенных в табл. 1 объясняется тем, что расчетная модель не учитывает потери, обусловленные наличием на реальном двигателе вспомогательных систем и навесных агрегатов (газораспределительный механизм, насос охлаждающей жидкости, вентилятор системы охлаждения и т. д.). Из работы [7] следует, что на привод одних только вентилятора и насоса

охлаждающей жидкости затрачивается до 5-10 % эффективной мощности двигателя, что примерно соответствует расхождению между расчетными и паспортными данными в табл. 1. Поскольку данные потери не зависят от степени сжатия, то в условиях этой работы ими возможно пренебречь.

При расчетах зависимостей параметров исследуемого двигателя от степени сжатия угол начала теплоподвода выбирался из условия получения максимального эффективного КПД.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 2 представлены расчетные зависимости эффективного КПД от степени сжатия при различных коэффициентах избытка воздуха, полученные при частоте вращения коленчатого вала, равной 1200 об/мин.

Понижение степени сжатия исследуемого двигателя с 17,3 до 15 не вызывает понижения эффективного КПД цикла на полной нагрузке (а = 1,4), а на частичных нагрузках даже отмечается его рост (на 1,2%, 2,1% и 3% для а = 2, а = 3 и а = 3,5 соответственно).

В случае понижения степени сжатия с 17,3 до значения 12,5 при а = 1,4 наблюдается снижение эффективного КПД лишь на 1,2 %. На частичных нагрузках эффективный КПД, как и при е = 15, возрастает (на 0,9 %, 2,7 % и 4,5 % для а = 2, а = 3 и а = 3,5 соответственно).

Падение эффективного КПД двигателя с повышением степени сжатия выше определенного значения обуславливается двумя основными причинами. Во-первых, увеличением механических потерь (рис. 3), поскольку с повышением степени сжатия растет давление газов в цилиндре двигателя (рис. 4). При увеличении коэффициента избытка воздуха относительная доля механических потерь возрастает, соответственно снижается значение степени сжатия, соответствующее максимальному эффективному КПД.

Во-вторых, повышение степени сжатия при неизменной продолжительности сгорания влечет большее отклонение от изохорного подвода теплоты. Это легко понять, если ввести условную величину:

где Уф = ДУЙ + Ус, АУи — часть рабочего объема двигателя, на которую распространяется процесс теплоподвода. При изохорном подводе теплоты (А У, = 0) это выражение переходит в из-

вестное выражение для степени сжатия (расширения):

Отношение этих величин характеризует отклонение от изохорности подвода теплоты в зависимости от объема камеры сгорания:

Видно, что с уменьшением объема камеры сгорания, а следовательно, с увеличением степени сжатия, отклонение от изохорности при постоянной продолжительности теплоподвода увеличивается. Как следствие, с повышением степени сжатия (при неизменной продолжительности сгорания) индикаторный КПД будет расти гораздо медленнее термического и, при определенных условиях, даже снижаться (рис. 3). По этой же причине практически не увеличиваются максимальные значения температуры цикла (рис. 4).

Рис. 2. Зависимость эффективного КПД от степени сжатия при различных коэффициентах избытка воздуха (п = 1200 об/мин)

Таким образом, в условиях исследуемого дизеля варьирование степени сжатия в диапазоне от 12,5 до 20 практически не влияет на эффективный КПД двигателя на полной нагрузке. На частичных нагрузках происходит повышение КПД двигателя при переходе в диапазон к 12,5 — 15.

Если учесть, что транспортный двигатель эксплуатируется на частичных режимах (меньше половины максимальной мощности) до 50-70 % общего времени, а на режимах холостого хода до 40 % [8], то можно констатиро-

вать, что снижение степени сжатия до значений 12,5-15 не повлечет ухудшения экономичности. При этом уровень нагрузок на элементы двигателя (рис. 4) значительно уменьшится (до 30 %).

1 1 1 1 і і і і Чт 1 1 / 1 1

Степень сжатия а = 1,4 —-а = 2————-а = 3 —а = 3,5

Рис. 3. Зависимость механического (цт) и индикаторного (^,) КПД от степени сжатия при различных коэффициентах избытка воздуха

Рис. 4. Зависимости максимального давления и максимальной температуры цикла от степени сжатия

Данный вывод подтверждается результатами, полученными в работе [9], где исследовался дизель со специальной системой зажигания с рядом последовательных искр. Было отмечено, что при снижении степени сжатия до 12, топливная экономичность дизеля возрастала.

При реализации перспективного многотопливного рабочего процесса на базе дизельного двигателя Д 65 рекомендуется снизить степень сжатия до значений 12,5-15, поскольку это уменьшит нагрузки, действующие на конструкцию двигателя без ухудшения экономичности, что, в свою очередь позволит либо снизить массу и габариты, либо увеличить запас прочности и ресурс двигателя. Кроме того, понижение степени сжатия снизит вероятность самовоспламенения топливо-воздушной смеси раньше момента искрового воспламенения при использовании низкооктановых топлив.

1. Борисов А. О. Рабочий процесс многотопливного поршневого двигателя / под ред. Р. Д. Ени-кеева. Уфа: ДизайнПолиграфСервис, 2008. 272 с.

2. Воинов А. Н. Сгорание в быстроходных поршневых двигателях. М.: Машиностроение, 1977. 277 с.

3. Губайдуллин И. С. Моделирование рабочих процессов двигателей внутреннего сгорания в интерактивной системе имитационного моделирования «Альбея». Уфа: УГАТУ, 1997. 43 с.

4. Загайко С. А. Моделирование механических потерь ДВС в системе имитационного моделирования «Альбея». Уфа, 1996. 74 с.

5. Горбачев В. Г. Система имитационного моделирования «Альбея» (ядро). Руководство пользователя. Руководство программиста: Учеб. пособие. УГАТУ. Уфа, 1995. 112 с.

6. Мацкерле Ю. Современный экономичный автомобиль / под ред. А. Р. Бенедиктова. М.: Машиностроение, 1987. 320 с.

7. Хуциев А. И. Двигатели внутреннего сгорания с регулируемым процессом сжатия. М.: Машиностроение, 1986. 104 с.

8. Phatak R. G., Komiyama K. Investigation of a spark — assisted diesel engine // SAE Techn. Pap. Ser. 1983. № 830588. P. 8.

Гарипов Марат Данилович, доцент каф. двигателей внутр. сгорания. Дипл. магистр (УГАТУ, 1999). Канд. техн. наук по тепл. двигателям (УГАТУ, 2004). Иссл. в обл. перспект. раб. проц. ПДВС.

Назмутдинова Гульнара Рамилевна, магистрант той же каф. Дипл. бакалавр (УГАТУ, 2011). Иссл. в обл. моделирования раб. проц. ПДВС.

Сакулин Роман Юрьевич, доц. той же каф., доц. каф. прикл. гидромеханики. Дипл. магистр (УГАТУ, 2006). Канд. техн. наук по тепл. двигателям (УГАТУ, 2010). Иссл. в обл. экологичности ПДВС.

Увеличение степени сжатия

Объем камеры сгорания влияет на конечную степень сжатия двигателя.

Камера сгорания, это объем образуемый головкой блока и поршнем в момент нахождения поршня в верхней мертвой точке. Степень сжатия, это отношение объемов цилиндров от максимального до минимального. Максимальный объем камеры сгорания получается, когда поршень находится в нижней мертвой точке. Минимальный при нахождении поршня в верхней мертвой точке цилиндра.

Объем цилиндра без учета камеры сгорания можно узнать, поделив паспортный рабочий объем двигателя на количество цилиндров.

Объем камеры сгорания состоит из суммы 3 объемов:

1 Объем камеры сгорания на головке блока
2 Объем, образуемый толщиной прокладки головки блока
3 Объем вогнутого пространства в днище поршня.
Справедливости ради стоит сказать, что существует масса вариантов когда поршни выпуклые и при вычислениях они не добавляют, а наоборот уменьшают пространство камеры сгорания. И это нужно учитывать при расчетах.

объем камеры сгорания степень сжатия

Степень сжатия и компрессия, это не одно и тоже и различается тем, что степень сжатия это геометрическая величина, а компрессия динамическая. Так как двигатель при вращении обладает некоторыми насосными свойствами, плюс воздух при сжатии нагревается, то величина компрессии будет отличаться от степени сжатия в большую сторону. Компрессия обычно больше в 1.4 раза чем степень сжатия.

Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.

То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать?

Степень сжатия можно повысить двумя самыми эффективными способами:

1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки.

2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия.

Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14.

Примеры прибавок в процентах:

с 8 до 9 = 2.0 % прибавка мощности
с 9 до 10 = 1.7 % прибавка мощности
с 10 до 11 = 1.5 % прибавка мощности
с 11 до 12 = 1.3 % прибавка мощности
с 12 до 13 = 1.2 % прибавка мощности
с 13 до 14 = 1.1 % прибавка мощности
с 14 до 15 = 1.0 % прибавка мощности
с 15 до 16 = 0.9 % прибавка мощности
с 16 до 17 = 0.8 % прибавка мощности
Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 %

Примеры перехода на более высокооктановое топливо при повышении (СС)

менее 8 — 76 бензин
от 8 до 9 — 80 бензин
от 9 до 10.5 — 92 бензин
от 10 до 12.5 — 95 бензин
от 12 до 14.5 — 98 бензин
от 13.5 до 16 — 102 бензин
от 15.5 до 18 — 109 бензин
Минимальное октановое число топлива применяемое в каждом конкретном двигателе зависит не только от степени сжатия но и в некоторой степени от конструкции формы камеры сгорания, алгоритма работы клапанного механизма, системы зажигания итд. Поэтому более совершенные двигатели могут работать с большими величинами степени сжатия без повышения качества топлива.

Вот что на самом деле означает ‘степень сжатия’, и почему это имеет значение

Почему для двигателей так важна степень сжатия, и на что она влияет.

Вы наверняка слышали термин «степень сжатия» в двигателях внутреннего сгорания. Но вы когда-нибудь задумывались, что он означает? Итак, пришло время точно объяснить, что же такое коэффициент сжатия (степень) в двигателях автомобиля и почему сегодня все автопроизводители одержимы этим показателем, как будто этот параметр представляет собой Святой Грааль для будущих продаж автоновинок.

Сразу хотим отметить, что разобраться в том, что такое степень сжатия двигателя, не так просто, как кажется на первый взгляд. Вы наверняка заметили в различных рекламных проспектах и каталогах, а также в описании на сайтах автопроизводителей, что автобренды пытаются привлечь наше внимание такой характеристикой, как степень сжатия двигателей. Особенно стараются нам рассказать о степени сжатия менеджеры автосалонов. Мы обычно делаем вид, что понимаем, о чем идет речь, пропуская мимо ушей эту информацию. И причина такого поведения в том, что многие автолюбители просто не представляют, что такое степень сжатия двигателей, равно как и на что она влияет. Но тем не менее мы считаем, что все автолюбители должны знать, что же это за показатель двигателей внутреннего сгорания, о котором недавно вспомнили многие автопроизводители.

Мы знаем, что высокое сжатие двигателя – это хорошо, а низкое – плохо. Мы также знаем, что новый мотор Mazda Skyactiv-X имеет высокую степень сжатия. Не отстает от Mazda и Toyota со своими моторами «Dynamic Force», которые имеют высокую степень сжатия. Эти компании рекламируют новые двигатели с большим коэффициентом сжатия, заявляя, что они не только стали мощнее, но и получили большую экономичность. Но при чем здесь высокая степень сжатия и увеличение мощности с уменьшением расхода топлива? Сейчас объясним.

Двигатель Toyota «Dynamic Force»

Мы живем в эпоху, когда инженеры не могут просто дать двигателю больше энергии за счет укрупнения, как, например, это было раньше, когда автопроизводители на многие свои автоновинки устанавливали моторы с увеличенным объемом. К тому же это приводило к неминуемому увеличению расхода топлива и росту уровня вредных выбросов в выхлопе автомобиля. Сегодня в связи с дороговизной топлива по всему миру и сложной экологической обстановкой подобный способ увеличения мощности мотора не подходит. Особенно если учитывать жесткие экологические нормы, предъявляемые автопроизводителям рядом развитых западных стран.

В итоге автопроизводители стали улучшать эффективность нынешних моторов за счет применения турбин и увеличения степени сжатия современных двигателей.

Как определяется степень сжатия, и что это такое?

Степень сжатия – это показатель, при котором устанавливается, какой максимальный объем цилиндра двигателя может быть сжат в минимальный объем цилиндра. Этот показатель степени сжатия определяется как соотношение.

Например, обычно степень сжатия записывают вот таким образом: 9:1 (коэффициент сжатия двигателя «девять к одному»).

Теперь представьте цилиндр двигателя. Внутри цилиндра двигателя, как вы знаете, перемещается поршень: вверх и вниз. Когда поршень находится в самой нижней точке цилиндра двигателя, это называется «нижней мертвой точкой». Именно в этом положении поршня сверху него находится наибольший объем цилиндра. Когда поршень находится в самой высокой точке внутри цилиндра двигателя, это положение поршня называется «верхней мертвой точкой». В этом положении объем цилиндра находится в наименьшем значении. Вот сравнение этих двух объемов цилиндров над поршнями двигателя и образует соотношение степени сжатия. Обратите внимание, что когда поршень находится в верхней мертвой точке, все-таки над ним есть объемное пространство, где и происходит сжатие топливно-воздушной смеси.

Для тех, кто любит больше смотреть, чем читать, внизу мы публикуем GIF-картинку, на которой демонстрируется, как работает четырехтактный двигатель. Обратите внимание, как поршень движется вверх во время такта сжатия топливной смести (топливо + кислород), которая подается клапанами головки блока двигателя. Напомним, что воздух и топливо, поступаемые в цилиндр двигателя, сжимаются поршнем, чтобы затем воспламенить эту смесь с помощью свечи зажигания (в бензиновых моторах) или за счет сильного сжатия (в дизельных моторах).

Если двигатель имеет высокую степень сжатия, это означает, что заданный объем воздуха и топлива в цилиндре сжимается в гораздо меньшем пространстве, чем в двигателях с небольшой степенью сжатия.

А теперь математический пример соотношения степени сжатия в ДВС.

Предположим, что у нас есть двигатель, объем цилиндра и камер сгорания которого в момент нахождения поршня в нижней мертвой точке составляет 10 куб. см. После того как впускной клапан головки блока двигателя закрывается и поршень поднимается вверх, начав такт сжатия, он сжимает воздух и топливную смесь в пространство 1 куб. см. Этот двигатель имеет коэффициент сжатия (степень) 10:1.

Также часто производители любят вычислять итоговую степень сжатия, деля большее значение объема цилиндра над поршнем на меньший объем цилиндра. В итоге во многих технических характеристиках автомобилей вместо соотношения производители указывают результат деления этих значений.

Таким образом вычисляется, во сколько раз сжимается топливно-воздушная смесь при движении из нижней мертвой точки поршня в верхнюю мертвую точку. Разделив большее значение на меньшее, мы и получим итоговое значение степени сжатия без соотношения большего объема к меньшему.

Почему производители стараются увеличить степень сжатия?

Но не все так просто со степенью сжатия. Одно дело – понимать, что такое степень сжатия. И это не менее важно по сравнению с пониманием, почему так важна высокая степень сжатия для современных двигателей. К сожалению, объяснить простыми словами, почему высокая степень сжатия в двигателях современных автомобилей – это отличное решение на ближайшие годы, не получится. Тем не менее мы попытаемся.

Вы знаете, что мощность двигателя появляется в тот момент, когда сгорание топливной смеси оказывает силу на поршень внутри цилиндра двигателя. Эта сила толкает поршень вниз по цилиндру. И чем выше поршень находится в цилиндре в момент сжигания топливно-воздушной смеси, тем больше сил будет приложено на поршень.

Как мы уже сказали, чем больше степень сжатия, тем выше находится поршень в верхней мертвой точке. В итоге это позволяет вырабатывать больше мощности в момент сгорания топлива. Также помимо увеличения мощности для вырабатывания силы, толкающей поршень вниз по цилиндру двигателя, необходимо меньше топлива, что в конечном итоге влияет на топливную эффективность мотора. Это простое объяснение. Но оно неполное, поскольку при увеличении степени сжатия двигателей возникает ряд проблем, для решения которых необходимо в идеале знать термодинамику.

Итак, мы знаем, что высокая степень сжатия означает, что двигатель получает больше силы и мощности из того же количества топлива по сравнению с мотором с меньшим коэффициентом сжатия. Как мы выяснили, это хорошо для динамики автомобиля, а также для достижения хороших показателей его экономичности.

Чтобы объяснить вам точнее, почему более высокая степень сжатия дает больше экономии топлива, мы не будем погружаться слишком глубоко в науку о термодинамике. Тем не менее без нее нам также не объяснить вам в деталях, почему моторы с большой степенью сжатия более экономичные. Да, это нелегко понять. Но все же этот раздел термодинамики очень и очень интересен.

Более высокое сжатие в двигателе означает больше мощности, но больше давления

На приведенном выше рисунке показана диаграмма PV давления – объема для идеального типичного бензинового двигателя. Этот график наглядно демонстрирует, что происходит в двигателе, когда он сжигает воздушно-топливную смесь (в нашем примере бензин + кислород).

На приведенном выше графике кривая 1-2 показывает ход сжатия.

Линия 2-3 показывает сгорание топлива.

Верхняя кривая 3-4 показывает ход расширения.

И линия 4-1 показывает отвод тепла, когда открывается выпускной клапан в головке блока цилиндров двигателя.

Если описать все более техническим языком, то эту диаграмму следует понимать так:

На диаграмме кривая 1-2 показывает ход сжатия, при котором давление (ось Y) возрастает, а объем (ось Х) падает, когда поршень сжимает воздушно-топливную смесь внутри цилиндра, приближаясь к верхней мертвой точке.

Линия 2-3 показывает тепло, выделяемое во время горения топливной смеси. Эта линия показывает, как быстро увеличивается давление и температура сгораемого топлива.

Кривая 3-4 показывает увеличение объема цилиндра двигателя и падение давления, когда газ, полученный в процессе сгорания топливной смеси, оказывает силу на поршень, который начинает свое движение вниз по цилиндру двигателя (такт расширения).

Линия 4-1 показывает отвод тепла от газов, образованных в процессе сгорания топлива. Когда давление внутри цилиндра возвращается к давлению окружающей среды, открывается выпускной клапан.

Наконец, линия 1-5 демонстрирует нам ход выхлопа (выхлопной цикл мотора), в процессе которого поршень снова движется внутри цилиндра вверх (к верхней мертвой точке), чтобы снова сжать топливно-воздушную смесь для повторения цикла.

Область в пределах линий 1-2-3-4 показывает нам, сколько работы было проделано двигателем в рамках одного лишь только цикла. Более высокая степень сжатия двигателя означает, что две вертикальные линии на графике выше будут двигаться влево и вверх, оставляя больший диапазон хода поршня, что влияет на получение большей мощности по сравнению с двигателем, имеющим низкий коэффициент сжатия. То есть двигатель с высокой степенью сжатия сделает больше работы за один цикл, чем мотор с небольшой степенью сжатия.

И все дело в том, что в двигателях с высокой степенью сжатия в процессе сгорания топлива образуется больше давления, которое с большей силой двигает поршень вниз по цилиндру. Правда, в этом случае внутри двигателя выделяется больше тепла.

Более высокое сжатие в двигателе также означает более высокую тепловую эффективность

Важно отметить, что образование тепла и потеря тепла в течение цикла работы двигателя напрямую связаны с его эффективностью (речь идет о коэффициенте полезного действия – КПД). Причем на КПД главное влияние оказывает степень сжатия двигателя. Все дело в двух идеях. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована в механическую или отработанную. Во-вторых, тепловая эффективность – это просто результат работы двигателя (мощность и сила), разделенный на теплопередачу.

Вот как выглядит уравнение этой взаимосвязи (nтепловой КПД, rстепень сжатия, а γ (гамма)свойство жидкости):

Теперь вернемся к нашей диаграмме выше. Когда вы обеспечиваете больший ход поршня между верхней и нижней мертвой точкой, вы увеличиваете степень сжатия. За счет этого вы смещаете на диаграмме PV вверх и влево и увеличиваете температуру (Qh на графике выше). Причем увеличение температуры будет больше, чем потери тепла (Ql).

Иными словами, вы добываете в процессе сгорания топливной смеси больше энергии за один цикл работы двигателя. Кстати, вот один интересный ролик видеоблогера Джейсона Фенске, который рассказывает более простыми словами о взаимосвязи между степенью сжатия, теплопередачей и эффективностью (экономичностью двигателя):

Для тех, кто не знает английский, включите субтитры и их машинный перевод на русский язык.

Так что, как вы, наверное, уже поняли, тепловая эффективность двигателя возрастает по мере увеличения степени сжатия двигателя. Таковы законы физики, а именно законы термодинамики. Особенно это становится ясно из уравнения, приведенного выше.

Соответственно, чем выше степень сжатия мотора, тем больше он выдает лошадиных сил и меньше потребляет топлива. Для нас это означает более тяжелый кошелек за счет сэкономленных денег на заправке и больше адреналина при разгоне.

Чтобы это понять, вам нужно взять на прокат какой-нибудь старый американский неэффективный автомобиль с бензиновым V8 атмосферным двигателем, который имеет низкую степень сжатия. Поездив на таком автомобиле несколько дней, вы поймете, что автомобиль «жрет», как слон, но взамен не выдает хорошую мощность, которую сегодня показывают современные четырехцилиндровые и даже трехцилиндровые моторы.

Например, знаменитый двигатель Skyactiv-G от Mazda является очень эффективным в плане не только мощности, но и хорошей экономичности. Во многом это благодаря большой степени сжатия. Также ряд и других производителей стали выпускать современные моторы с высоким коэффициентом сжатия. Так, сегодня компании Mazda, Nissan / Infiniti и Toyota и другие начали выпускать двигатели с очень высокой степенью сжатия – 14:1.

Вы не поверите, но двигатели с такой степенью сжатия еще недавно казались фантастикой. Кстати, благодаря такой степени сжатия автопроизводителям нет необходимости оснащать двигатели турбинами, для того чтобы добиться соответствия современным стандартам экономичности, экологическим нормам, а также требованиям к мощности.

Почему более высокая степень сжатия означает, что автомобиль должен заправляться топливом с высоким октановым числом

Но почему большинство автопроизводителей сегодня не перешли на выпуск двигателей с высокой степенью сжатия, если такие силовые агрегаты позволяют без турбокомпрессоров добиваться таких выдающихся результатов эффективности силовых агрегатов? Все дело в законах физики.

Многие двигатели с высоким коэффициентом сжатия нуждаются в премиальном топливе или в высокооктановом бензине.

Тем, кто не знает или не помнит, что такое октан бензина и как он помогает избежать детонации в двигателе, советуем почитать наши следующие материалы:

Топливо с низким октановым числом по сравнению с топливом с высоким октаном, скорее всего, будет самопроизвольно воспламеняться из-за более высоких температур и давления воздуха в двигателях с высокой степенью сжатия. Мы знаем, что воспламенение топливно-воздушной смеси должно происходить, когда это действительно нужно, а не наоборот. Такое неконтролируемое воспламенение топлива называется детонацией. Это очень вредно для любых двигателей внутреннего сгорания. Дело в том, что излишняя детонация уменьшает крутящий момент и может нанести непоправимый урон двигателю автомобиля.

Высокая степень сжатия увеличивает риск сильной детонации двигателя. Вот почему моторы с большим коэффициентом сжатия, как правило, работают на высококачественном или высокооктановом бензине.

Главная причина риска самовоспламенения топливно-воздушной смеси в двигателях с высокой степенью сжатия – это превышение допустимого давления, которое приводит к резкому нагреву топливной смеси. В итоге это вызывает преждевременное сжигание топлива еще до того, как свеча зажигания с помощью искры зажжет его. Повторяем, преждевременное воспламенение топлива – это очень плохо для любого двигателя.

Для того чтобы снизить риск преждевременного воспламенения топлива, компания Mazda много работала над поршневыми и выпускными конструкциями бензиновых двигателей с высокой степенью сжатия (соотношение степени сжатия в цилиндрах двигателя 14:1). Например, мотор Skyactiv-X оснастили специальными поршнями, имеющими полость посередине, которая позволила предотвращать всплеск богатого кислородом топлива вокруг области воспламенения топливной смеси от свечи зажигания.

Именно проблема самовоспламенения топлива в двигателях с высокой степенью сжатия и препятствует сегодня массовому распространению данного типа моторов во всей автопромышленности. Подробнее об двигателе Mazda можно почитать здесь

Существуют ли ограничения по увеличению степени сжатия в двигателях

Интересно, почему автопроизводители не стараются сделать степень сжатия своих двигателей еще больше? Почему сегодня коэффициент сжатия 14:1 уже считается много? Неужели нельзя сделать двигатель с еще большим коэффициентом сжатия? Ведь в таком случае автомобили получили бы еще больше мощности и одновременно стали бы еще экономичней.

Например, почему бы не сделать двигатель со степенью сжатия 60:1? Но на самом деле это невозможно в сегодняшнем мире.

Такую степень сжатия не выдержит ни один металл внутри двигателя. Да дело даже не в металле. Даже если бы у нас был такой крепкий дешевый металл, способный выдержать степень сжатия 60:1, все равно бы мы не смогли построить подобный рабочий мотор. Просто такая степень сжатия привела бы к чрезмерно высокой температуре внутри двигателя. В итоге мотор стал бы настолько горячим, что это вызвало бы его самоуничтожение (двигатель взорвался бы от высоких температур).

Также, в принципе, нас не должна так сильно заботить высокая степень сжатия в современных автомобилях, если речь идет, конечно, не о спортивных мощных автомобилях, где каждая лишняя лошадиная сила на вес золота. Сегодня в рамках массового рынка нас больше волнует не мощность, а экономичность обычных повседневных автомобилей. Особенно во времена немалой стоимости топлива, где вопрос экономии топлива напрямую влияет на наши кошельки. Также сегодня более остро стоит вопрос экологии. А мы знаем, что чем менее экономичен автомобиль, тем меньше он загрязняет окружающую среду выхлопными газами. Так что, в принципе, увеличение степени сжатия в современных двигателях необходимо в первую очередь для улучшения экологической обстановки на всей планете. Но для того чтобы этого добиться, нет смысла существенно увеличивать в современных моторах степень сжатия.

Вот мы и подошли к концу темы о степени сжатия двигателей внутреннего сгорания. Надеемся, что теперь вы не просто знаете, что такое степень сжатия силовых агрегатов, но и понимаете, какую важную роль она играет в современных двигателях.

Степень сжатия двигателя

24 февраля 2020 Категория: Полезная информация.

Степенью сжатия называется одна из основных характеристик двигателя внутреннего сгорания (ДВС). От нее напрямую зависит мощность мотора, топливная экономичность, а также динамика автомобиля.

dizel

В статье:

  • Как степень сжатия двигателя влияет на мощность?
  • Как увеличить степень сжатия двигателя?
  • Как уменьшить степень сжатия двигателя?

Воздушно-топливная смесь поступает в цилиндр, когда соответствующий поршень находится в самом нижнем положении (нижняя мертвая точка). В это время она занимает максимально возможный объем, который уменьшается по мере движения поршня в верхнем направлении, и становится минимальным после достижения им крайней верхней позиции. В этот момент объем цилиндра ограничен камерой сгорания, и находящаяся в ней смесь воспламеняется. Создавшееся мощное давление оказывает воздействие на поршень, отталкивая его в нижнем направлении и, тем самым, заставляя вращаться коленвал, на котором он установлен.

Pic1

Степенью сжатия называется показатель, который характеризует, во сколько раз уменьшается объем воздушно-топливной смеси при движении поршня от крайнего нижнего к крайнему верхнему положению. Говоря более простым языком, это отношение максимального объема цилиндра к объему камеры сгорания.

Влияние на мощность

Чем сильнее сжимается рабочая смесь, тем более высокое давление образуется в камере сгорания. Следовательно, поршень получает значительно больше энергии, которая естественным образом переходит на коленвал.

Вывод очевиден: чем выше степень сжатия — тем мощнее мотор. Но данный показатель не может увеличиваться бесконечно: при создании чрезмерно высокого давления может происходить крайне нежелательное явление — преждевременное воспламенение, называемое детонацией. Из-за него давление на поршень начинает создаваться еще до того, как он достигнет верхней позиции. Это становится причиной:

  • мощных и резких ударных нагрузок;
  • постоянного перегрева даже после непродолжительной работы;
  • разрушения поршневых пальцев и колец;
  • ощутимой потери динамики и мощности.

Поэтому степень сжатия должна определяться с учетом других рабочих характеристик и конструктивных особенностей конкретного двигателя.

Pic2

Увеличение степени сжатия

Возможность увеличения степени сжатия без риска преждевременной детонации предусмотрена во многих двигателях. Это делается через уменьшение объема камеры сгорания (чем он меньше, тем сильнее будет сжиматься находящаяся в ней рабочая смесь). Существует три способа:

  • Расточка цилиндров. При этом увеличивается объем двигателя. Поскольку объем камеры сгорания не меняется, это повышает степень сжатия. Однако расточка цилиндров подразумевает обязательную замену поршней, что обусловлено увеличением диаметра.
  • Фрезерная обработка нижней части ГБЦ, в результате чего она укорачивается. Объем двигателя остается прежним, а у камеры сгорания — уменьшается, соответственно — повышается степень сжатия.
  • Установка более тонкой прокладки ГБЦ по сравнению с имеющейся. Это также приведет к уменьшению объема камеры сгорания при неизменном объеме двигателя.

Подробнее о том, как увеличить мощность дизельного двигателя читайте в нашем материале.

В двух последних случаях следует учитывать вероятность столкновения поршней с клапанами. Поэтому перед модернизацией двигателя следует провести точные расчеты. Одним из вариантов решения проблемы является установка поршней, имеющих увеличенные выемки под клапана (они предназначены, в том числе, для подобных операций).

Pic3

Уменьшение степени сжатия

Процедура приводит к снижению мощности двигателя, но позволяет перевести двигатель на более дешевый низкооктановый бензин. Чтобы уменьшить степень сжатия, следует увеличить объем камеры сгорания. Это делается через повышение высоты прокладки под головкой блока цилиндров. Алгоритм прост: между двумя стандартными прокладками подкладывается третья, сделанная из алюминия.

Технология была широко распространена в советские времена, когда владельцы карбюраторных «Жигулей» и «Москвичей» массово переводили свои машины с 92-го на более дешевый 76-й бензин. На современных автомобилях, оснащенных электронными системами управления двигателем, проводить данную процедуру крайне не рекомендуется: с экономической точки зрения это бессмысленно, а с технической — может привести к серьезным неполадкам.

Иногда проще купить новый элемент двигателя, чем производить ремонт. Найти нужные запчасти вы можете у нас!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *