Процесс преобразования энергии в электрических машинах
Электрические машины разделяют по назначению на два основных вида: электрические генераторы и электрические двигатели . Генераторы предназначены для выработки электрической энергии, а электродвигатели — для приведения в движение колесных пар локомотивов, вращения валов вентиляторов, компрессоров и т. п.
В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции — паровой турбиной, на гидроэлектростанции — водяной турбиной.
Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии, или, как говорят, включить в электрическую сеть.
Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. Эти явления имеют место при работе как генератора, так и электродвигателя. Поэтому часто говорят о генераторном и двигательном режимах работы электрических машин.
Во вращающихся электрических машинах в процессе преобразования энергии участвуют две основные части: якорь и индуктор со своими обмотками, которые перемещаются относительно друг друга. Индуктор создает в машине магнитное поле . В обмотке якоря индуцируется э. д. с. и возникает электрический ток. При взаимодействии тока в обмотке якоря с магнитным полем создаются электромагнитные силы, посредством которых реализуется процесс преобразования энергии в машине.
Об осуществлении в электрической машине энергопреобразовательного процесса
Из основных электроэнергетических теорем Пуанкаре и Баркгаузена вытекают следующие положения:
1) непосредственное взаимообратное преобразование механической и электрической энергии возможно только в том случае, если электрическая энергия является энергией переменного электрического тока;
2) для осуществления процесса такого энергопреобразования необходимо, чтобы в системе электрических контуров, предназначаемых для этой цели, была либо изменяющаяся электрическая индуктивность, либо изменяющаяся электрическая емкость,
3) для осуществления преобразования энергии переменного электрического тока в энергию постоянного электрического тока, необходимо, чтобы в предназначаемой для этой цели системе электрических контуров имелось изменяющееся электрическое сопротивление.
Из первого положения следует, что механическая энергия может преобразоваться в электрической машине только в энергию переменного электрического тока или обратно.
Кажущееся противоречие этого утверждения с фактом существования электрических машин постоянного тока разрешается тем, что в «машине постоянного тока» мы имеем двустадийное преобразование энергии.
Так, в случае электромашинного генератора постоянного тока мы имеем машину, в которой механическая энергия преобразуется в энергию переменного тока, а эта последняя, вследствие наличия особого устройства, представляющего собой «изменяющееся электрическое сопротивление», преобразуется в энергию постоянного тока.
В случае электромашинного двигателя процесс идет, очевидно, в обратном направлении: подводимая к электромашинному двигателю энергия постоянного электрического тока преобразуется посредством упомянутого изменяющегося сопротивления в энергию переменного электрического тока, а последняя — в энергию механическую.
Роль упомянутого изменяющегося электрического сопротивления выполняет «скользящий электрический контакт», который в обычной «коллекторной машине постоянного тока» состоит из «электромашинной щетки» и «электромашинного коллектора», а в «униполярной электрической машине постоянного тока» из «электромашинной щетки» и «электромашинных контактных колец».
Так как для создания в электрической машине процесса энергопреобразования необходимо наличие в ней или «изменяющейся электрической индуктивности», или «изменяющейся электрической емкости», то электрическую машину можно выполнить либо на принципе электромагнитной индукции, либо на принципе электрической индукции. В первом случае получаем «индуктивную машину», во втором — «емкостную машину».
Емкостные машины не имеют пока практического значения. Применяемые в промышленности, на транспорте и в быту электрические машины представляют собой индуктивные машины, за которыми на практике укоренилось краткое наименование «электрическая машина», являющееся, по существу, более широким понятием.
Принцип действия электрического генератора.
Простейшим электрическим генератором является виток, вращающийся в магнитном поле (рис. 1, а). В этом генераторе виток 1 представляет собой обмотку якоря. Индуктором служат постоянные магниты 2, между которыми вращается якорь 3.
Рис. 1. Принципиальные схемы простейших генератора (а) и электродвигателя (б)
При вращении витка с некоторой частотой вращения n его стороны (проводники) пересекают магнитные силовые линии потока Ф и в каждом проводнике индуцируется э. д. с. е. При принятом на рис. 1, а направлении вращения якоря э. д. с. в проводнике, расположенном под южным полюсом, согласно правилу правой руки направлена от нас, а э. д. с. в проводнике, расположенном под северным полюсом, — к нам.
Если подключить к обмотке якоря приемник электрической энергии 4, то по замкнутой цепи пойдет электрический ток I. В проводниках обмотки якоря ток I будет направлен так же, как и э. д. с. е.
Выясним, почему для вращения якоря в магнитном поле приходится затрачивать механическую энергию, получаемую от дизеля или турбины (первичного двигателя). При прохождении тока i по расположенным в магнитном поле проводникам на каждый проводник действует электромагнитная сила F.
При указанном на рис. 1, а направлении тока согласно правилу левой руки на проводник, расположенный под южным полюсом, будет действовать сила F, направленная влево, а на проводник, расположенный под северным полюсом, — сила F, направленная вправо. Указанные силы создают совместно электромагнитный момент М, направленный по часовой стрелке.
Из рассмотрения рис. 1, а видно, что электромагнитный момент М, возникающий при отдаче генератором электрической энергии, направлен в сторону, противоположную вращению проводников, поэтому он является тормозным моментом, стремящимся замедлить вращение якоря генератора.
Для того чтобы предотвратить остановку якоря, требуется к валу якоря приложить внешний вращающий момент Мвн, противоположный моменту М и равный ему по величине. С учетом же трения и других внутренних потерь в машине внешний вращающий момент должен быть больше электромагнитного момента М, созданного током нагрузки генератора.
Следовательно, для продолжения нормальной работы генератора к нему необходимо подводить извне механическую энергию — вращать его якорь каким-либо двигателем 5.
При отсутствии нагрузки (при разомкнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе.
При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Рэл, увеличиваются ток I, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Рмх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.
Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.
Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является:
1. совпадение по направлению тока i и э. д. с. в проводниках обмотки якоря. Это указывает на то, что машина отдает электрическую энергию;
2. возникновение электромагнитного тормозного момента М, направленного против вращения якоря. Из этого вытекает необходимость получения машиной извне механической энергии.
Принцип действия электрического двигателя.
Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток 1 (рис. 1,б), расположенный на якоре 3, который вращается в магнитном поле полюсов 2. Проводники витка образуют обмотку якоря.
Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток I. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F.
При указанном на рис. 1, б направлении тока на проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо, а на проводник, лежащий под северным полюсом,— сила F, направленная влево. В результате совместного действия этих сил создается электромагнитный вращающий момент М, направленный против часовой стрелки, приводящий якорь с проводником во вращение с некоторой частотой n . Если соединить вал якоря с каким-либо механизмом или устройством 7 (колесной парой тепловоза или электровоза, станком и пр.), то электродвигатель будет приводить это устройство во вращение, т. е. отдавать ему механическую энергию. При этом внешний момент Мвн, создаваемый этим устройством, будет направлен против электромагнитного момента М.
Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направление которой определяется но правилу правой руки. Следовательно, при указанном на рис. 1, б направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Из рис. 1, б видно, что э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.
Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. Е, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.
При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.
При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.
Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:
1. совпадение по направлению электромагнитного момента М и частоты вращения n. Это характеризует отдачу машиной механической энергии;
2. возникновение в проводниках обмотки якоря э. д. с., направленной против тока i и внешнего напряжения U. Из этого вытекает необходимость получения машиной извне электрической энергии.
Принцип обратимости электрических машин
Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего.
Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током.
Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.
Обобщая рассмотренные процессы работы генератора и электродвигателя, можно установить принцип обратимости электрических машин . Согласно этому принципу любая электрическая машина может работать и генератором и электродвигателем и переходить из генераторного режима в двигательный и наоборот.
Рис. 2. Направление э. д. с. Е, тока I, частоты вращения якоря n и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах
Для выяснения этого положения рассмотрим работу электрической машины постоянного тока при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. E. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 2, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую.
Однако если по какой-либо причине э. д. с. Е станет больше внешнего напряжения U, то ток I в обмотке якоря изменит свое направление (рис. 2, б) и будет совпадать с э. д. с. Е. При этом изменится и направление электромагнитного момента М, который будет направлен против частоты вращения n . Совпадение по направлению э. д. с. Е и тока I означает, что машина стала отдавать в сеть электрическую энергию, а появление тормозного электромагнитного момента М говорит о том, что она должна потреблять извне механическую энергию.
Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E < U машина работает двигателем, при E >U — генератором.
Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
какое превращение энергии происходит в электро двигателе?
Электрический ток создает в обмотках статора и ротора
магнитное поле, под действием которого ротор приходит
во вращение. Значит, энергия электрического поля переходит
в энергию магнитного поля, а затем в механическую энергию
вращения. Некоторая часть исходной энергии переходит в
тепло и рассеивается.
Остальные ответы
если миксер включить. .
вот и происходит
из химической в электрическую (это если от аккумулятора) и далее в механическую (последяя присудствует всегда, есть из световой в электрическую-механическую, ну может ещё тепловая-электрическая-механическая
Какие превращения энергии происходят в электродвигателях?
Пожалуйста, войдите или зарегистрируйтесь для публикации ответа на этот вопрос.
решение вопроса
Связанных вопросов не найдено
Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.
поделиться знаниями или
запомнить страничку
- Все категории
- экономические 43,679
- гуманитарные 33,657
- юридические 17,917
- школьный раздел 612,511
- разное 16,911
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
- Обратная связь
- Правила сайта
Электродвигатель: устройство и принцип работы
Электродвигатель — электротехническое изделие, основной функцией которого является преобразование энергии электрической в механическую. Это основной элемент электропривода. Превращение энергии происходит за счет взаимодействия магнитного поля ротора и статора. Электромеханические преобразователи широко применяются в приборах, которые используются в бытовом хозяйстве. Среди них стиральные машины, электробритвы, соковыжималки, пылесосы и многие другие. Электрические моторы приводят в движение подключенные к ним механизмы. В этой статье мы рассмотрим устройство электродвигателя, его основные виды, принцип работы и применение.
Чтобы понять, как работает мотор, нужно знать, из чего состоит электродвигатель. Изобретателем электродвигателя считается Майкл Фарадей. Он сделал открытие в 1821-ом году: показал, что непрерывное вращение происходит при взаимодействии магнита с электрическим током в проводнике.
Независимо от вида устройство электродвигателя однотипное. Внутри цилиндрической проточки расположены ротор (вал, вращающаяся часть машины) и статор, которым называют неподвижную часть. Это основные элементы электромашины. У большинства двигателей ротор расположен внутри статора. Но есть и такие, в которых он установлен снаружи. Их называют двигателями обращенного типа.
Ротор в свою очередь включает:
• сердечник;
• стержни;
• торцевые кольца;
• вал электродвигателя.
Ротор со статором не соприкасается. Он крепится в подшипниковых щитах агрегата.
Статор состоит из:
• чугунного или алюминиевого корпуса;
• сердечника
• обмотки.
Электродвигатель может иметь дополнительное оборудование. Например, двигатель с тормозом будет включать электромагнитный тормоз, расположенный перед вентилятором.
Виды
Выделяют несколько типов электродвигателей в зависимости от используемого питания, конструкции, принципа работы.
По типу напряжения бывают:
• постоянного тока (ДТП);
• переменного тока;
• универсальные.
В зависимости от конструкции :
• с горизонтально расположенным валом;
• с вертикально расположенным.
По принципу работы выделяют:
Наиболее простой вид электродвигателя — асинхронный. В нем отсутствуют щитки, обмотки ротора, которые есть в синхронных преобразователях. Принцип действия электродвигателя следующий: мотор вращается одновременно с магнитным полем.
Классифицируются электродвигатели по назначению, мощности и климатическому исполнению.
Классификация электродвигателей
Электрические двигатели делятся на 2 большие группы:
• постоянного тока, которые, в свою очередь, подразделяются на бесщеточные и с щетками.
• переменного тока, которые могут быть универсальными, индукционными или синхронными.
Электрические преобразователи постоянного тока со щетками имеют 4 системы возбуждения:
1. последовательная, где у ДТП значительный начальный момент;
2. параллельная: в таком моторе обмотки статора и якоря соединены параллельно. Скорость вращения подвижной части от нагрузки не зависит;
3. от постоянных магнитов: отличается небольшими габаритами;
4.с мешанное возбуждение: здесь электромагнит разделен на 2 части. Первая подключена параллельно обмотке якоря, вторая — последовательно. Применяется в механизмах, где требуется высокий момент трогания.
Принцип работы асинхронного двигателя
В наиболее простом типе электродвигателя магнитное поле создается обмотками стартера. Концы обмотки выходят к клеммной колодке. Статор охлаждается вентилятором, который располагается в торце электромотора.
Ротор в электродвигателе асинхронном — короткозамкнутый. Он состоит из стержней, замыкающихся между собой. Такая конструкция электродвигателя обеспечивает надежность ротора и его долговечность, так как нет необходимости постоянно менять токопередающие щетки.
Асинхронные моторы в основном ломаются из-за износа подшипников. В этом типе двигателей есть несоответствие скорости вращения мотора и частоты магнитных полей. Напряжение индуцируется переменными магнитными полями катушки статора двигателя. Чтобы асинхронный электродвигатель работал, ротор должен вращаться медленнее, чем магнитные поля неподвижной части.
В обмотках мотора вращение магнитных полюсов происходит постоянно. На скорость вращения подвижной части оказывает влияние количество полюсов. Она будет одинаковой у подвижной части и магнитного поля при двух полюсах. Чтобы понизить скорость вала вдвое, нужно увеличить количество полюсов вчетверо. Устройство и принцип работы электродвигателя асинхронного типа просты, поэтому изделия доступны в ценовом плане. Главный их недостаток — регулирование скорости движения вала происходит только за счет изменения частот электрического тока.
Принцип работы синхронного двигателя
Электрические машины данного типа имеют следующие преимущества:
• менее чувствительны к скачкам напряжения;
• отличаются хорошей сопротивляемостью к перегрузкам;
• поддерживают постоянную скорость ротора.
Однако недостаток синхронных двигателей в том, у ни х достаточно сложная конструкция. Также они оказываются невыгодными при низкой мощности (до 100 Вт).
Электродвигатели переменного тока
Синхронные электродвигатели переменного тока широко применяются в приборах, используемых в быту. Здесь ротор имеет постоянную скорость, которую можно регулировать. Синхронные двигатели, питание которых осуществляется переменным током, применяют там, где скорость вращения должна быть более 3 000 оборотов в минуту. Регулировка производится изменением подаваемого напряжения. Разберемся, как работает электродвигатель переменного тока.
Вращение ротора происходит при контакте тока якоря с магнитным потоком в обмотке возбуждения. Меняется магнитный поток при изменении движения переменного тока. Таким образом происходит одностороннее вращение.
Синхронные двигатели переменного тока применяются в пылесосах, соковыжималках, стиральных машинах, различных электроинструментах, в насосах и так далее.
Электродвигатели постоянного тока
Электродвигатели постоянного тока широко применяются в промышленном оборудовании. Отличаются от преобразователей переменного тока высоким КПД (коэффициентом полезного действия) — на 15% выше. У них простая схема управления благодаря использованию микроприводов. Все это позволяет изготавливать электродвигатели постоянного тока небольших размеров.
Электрические машины постоянного тока отличаются высоким начальным моментом. Их используют в оборудовании, где предусматривается запуск под большой нагрузкой. В основном это тяговые и электроподъемные механизмы. Они применяют там, где требуется постоянство механического момента. Используются как двигатель и генератор.
Двигатели универсальные
Универсальные двигатели могут работать от источников постоянного и переменного тока. Их применяют в маломощных приборах и мелкой бытовой технике.
Отличительная черта универсальных двигателей — их строение. Магнитная система представляет собой секции, изолированные друг от друга. Обмотка разделена на две части. При подаче тока от источника переменного напряжения он поступает только в одну половину. Описанный принцип работы электродвигателя необходим для снижения радиопомех.
Универсальные моторы могут развивать скорость свыше 10 000 оборотов в минуту. Скорость можно регулировать без необходимости использования дополнительных устройств. К недостаткам этого вида электродвигателей можно отнести лишь следующие:ограниченная мощность и необходимость периодического технического обслуживания коллекторного узла.
Назначение
Главные функции электродвигателя – преобразование переменного тока в постоянный и электрической энергии в механическую.
Перед покупкой электрической машины необходимо знать не только то, как устроен электродвигатель, но и учитывать условия работы механизма, для которого он предназначается. Использование мотора недостаточной мощности приводит к нарушению работы оборудования, а завышенной — к ухудшению экономических показателей механизма и увеличению потери электроэнергии.
Параметры выбора
При выборе электродвигателя нужно обращать внимание на следующие критерии:
• мощность мотора;
• исполнение корпуса и размер вала;
• климатические условия;
• тип и величина напряжения, подаваемого в оборудование;
• режим работы.
Запас мощности должен быть всегда, но небольшой. В противном случае снижается КПД.
Подобрать электрический двигатель с необходимыми характеристиками и параметрами можно в ТВК «ЭлектроЦентр» и на сайте интернет-магазина stv39.ru .